Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Populus euphratica: the transcriptomic response to drought stress.

Identifieur interne : 002533 ( Main/Exploration ); précédent : 002532; suivant : 002534

Populus euphratica: the transcriptomic response to drought stress.

Auteurs : Sha Tang [République populaire de Chine] ; Haiying Liang ; Donghui Yan ; Ying Zhao ; Xiao Han ; John E. Carlson ; Xinli Xia ; Weilun Yin

Source :

RBID : pubmed:23857471

Descripteurs français

English descriptors

Abstract

Populus euphratica Olivier is widely established in arid and semiarid regions but lags in the availability of transcriptomic resources in response to water deficiency. To investigate the mechanisms that allow P. euphratica to maintain growth in arid regions, the responses of the plant to soil water deficit were analyzed at a systems level using physiological and pyrosequencing approaches. We generated 218,601 and 287,120 reads from non-stressed control and drought-stressed P. euphratica leaves respectively, totaling over 200 million base pairs. After assembly, 24,013 transcripts were yielded with an average length of 1,128 bp. We determined 2,279 simple sequence repeats, which may have possible information for understanding drought adaption of woody plants. Stomatal closure was inhibited under moderate drought to maintain a relatively high rate of CO2 assimilation and water transportation, which was supposed to be important for P. euphratica to maintain normal growth and develop vigorous root systems in an adverse environment. This was accompanied by strong transcriptional remodeling of stress-perception, signaling and transcription regulation, photoprotective system, oxidative stress detoxification, and other stress responsive genes. In addition, genes involved in stomatal closure inhibition, ascorbate-glutathione pathway and ubiquitin-proteasome system that may specially modulate the drought stress responses of P. euphratica are highlighted. Our analysis provides a comprehensive picture of how P. euphratica responds to drought stress at physiological and transcriptome levels which may help to understand molecular mechanisms associated with drought response and could be useful for genetic engineering of woody plants.

DOI: 10.1007/s11103-013-0107-3
PubMed: 23857471


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Populus euphratica: the transcriptomic response to drought stress.</title>
<author>
<name sortKey="Tang, Sha" sort="Tang, Sha" uniqKey="Tang S" first="Sha" last="Tang">Sha Tang</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, No. 35 Qinghua East Road, Haidian District, Beijing, 100083, People's Republic of China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, No. 35 Qinghua East Road, Haidian District, Beijing, 100083</wicri:regionArea>
<wicri:noRegion>100083</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Liang, Haiying" sort="Liang, Haiying" uniqKey="Liang H" first="Haiying" last="Liang">Haiying Liang</name>
</author>
<author>
<name sortKey="Yan, Donghui" sort="Yan, Donghui" uniqKey="Yan D" first="Donghui" last="Yan">Donghui Yan</name>
</author>
<author>
<name sortKey="Zhao, Ying" sort="Zhao, Ying" uniqKey="Zhao Y" first="Ying" last="Zhao">Ying Zhao</name>
</author>
<author>
<name sortKey="Han, Xiao" sort="Han, Xiao" uniqKey="Han X" first="Xiao" last="Han">Xiao Han</name>
</author>
<author>
<name sortKey="Carlson, John E" sort="Carlson, John E" uniqKey="Carlson J" first="John E" last="Carlson">John E. Carlson</name>
</author>
<author>
<name sortKey="Xia, Xinli" sort="Xia, Xinli" uniqKey="Xia X" first="Xinli" last="Xia">Xinli Xia</name>
</author>
<author>
<name sortKey="Yin, Weilun" sort="Yin, Weilun" uniqKey="Yin W" first="Weilun" last="Yin">Weilun Yin</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23857471</idno>
<idno type="pmid">23857471</idno>
<idno type="doi">10.1007/s11103-013-0107-3</idno>
<idno type="wicri:Area/Main/Corpus">002538</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002538</idno>
<idno type="wicri:Area/Main/Curation">002538</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002538</idno>
<idno type="wicri:Area/Main/Exploration">002538</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Populus euphratica: the transcriptomic response to drought stress.</title>
<author>
<name sortKey="Tang, Sha" sort="Tang, Sha" uniqKey="Tang S" first="Sha" last="Tang">Sha Tang</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, No. 35 Qinghua East Road, Haidian District, Beijing, 100083, People's Republic of China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, No. 35 Qinghua East Road, Haidian District, Beijing, 100083</wicri:regionArea>
<wicri:noRegion>100083</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Liang, Haiying" sort="Liang, Haiying" uniqKey="Liang H" first="Haiying" last="Liang">Haiying Liang</name>
</author>
<author>
<name sortKey="Yan, Donghui" sort="Yan, Donghui" uniqKey="Yan D" first="Donghui" last="Yan">Donghui Yan</name>
</author>
<author>
<name sortKey="Zhao, Ying" sort="Zhao, Ying" uniqKey="Zhao Y" first="Ying" last="Zhao">Ying Zhao</name>
</author>
<author>
<name sortKey="Han, Xiao" sort="Han, Xiao" uniqKey="Han X" first="Xiao" last="Han">Xiao Han</name>
</author>
<author>
<name sortKey="Carlson, John E" sort="Carlson, John E" uniqKey="Carlson J" first="John E" last="Carlson">John E. Carlson</name>
</author>
<author>
<name sortKey="Xia, Xinli" sort="Xia, Xinli" uniqKey="Xia X" first="Xinli" last="Xia">Xinli Xia</name>
</author>
<author>
<name sortKey="Yin, Weilun" sort="Yin, Weilun" uniqKey="Yin W" first="Weilun" last="Yin">Weilun Yin</name>
</author>
</analytic>
<series>
<title level="j">Plant molecular biology</title>
<idno type="eISSN">1573-5028</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Computer Simulation (MeSH)</term>
<term>Dehydration (genetics)</term>
<term>Dehydration (physiopathology)</term>
<term>Droughts (MeSH)</term>
<term>Gene Expression Profiling (methods)</term>
<term>Gene Expression Regulation, Plant (genetics)</term>
<term>Gene Expression Regulation, Plant (physiology)</term>
<term>Genes, Plant (genetics)</term>
<term>Genes, Plant (physiology)</term>
<term>Microsatellite Repeats (genetics)</term>
<term>Microsatellite Repeats (physiology)</term>
<term>Polymorphism, Genetic (genetics)</term>
<term>Populus (genetics)</term>
<term>Populus (physiology)</term>
<term>Real-Time Polymerase Chain Reaction (MeSH)</term>
<term>Transcriptome (genetics)</term>
<term>Transcriptome (physiology)</term>
<term>Trees (genetics)</term>
<term>Trees (physiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Analyse de profil d'expression de gènes (méthodes)</term>
<term>Arbres (génétique)</term>
<term>Arbres (physiologie)</term>
<term>Déshydratation (génétique)</term>
<term>Déshydratation (physiopathologie)</term>
<term>Gènes de plante (génétique)</term>
<term>Gènes de plante (physiologie)</term>
<term>Polymorphisme génétique (génétique)</term>
<term>Populus (génétique)</term>
<term>Populus (physiologie)</term>
<term>Réaction de polymérisation en chaine en temps réel (MeSH)</term>
<term>Régulation de l'expression des gènes végétaux (génétique)</term>
<term>Régulation de l'expression des gènes végétaux (physiologie)</term>
<term>Répétitions microsatellites (génétique)</term>
<term>Répétitions microsatellites (physiologie)</term>
<term>Simulation numérique (MeSH)</term>
<term>Sécheresses (MeSH)</term>
<term>Transcriptome (génétique)</term>
<term>Transcriptome (physiologie)</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Dehydration</term>
<term>Gene Expression Regulation, Plant</term>
<term>Genes, Plant</term>
<term>Microsatellite Repeats</term>
<term>Polymorphism, Genetic</term>
<term>Populus</term>
<term>Transcriptome</term>
<term>Trees</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Arbres</term>
<term>Déshydratation</term>
<term>Gènes de plante</term>
<term>Polymorphisme génétique</term>
<term>Populus</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Répétitions microsatellites</term>
<term>Transcriptome</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Gene Expression Profiling</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Analyse de profil d'expression de gènes</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Arbres</term>
<term>Gènes de plante</term>
<term>Populus</term>
<term>Régulation de l'expression des gènes végétaux</term>
<term>Répétitions microsatellites</term>
<term>Transcriptome</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Gene Expression Regulation, Plant</term>
<term>Genes, Plant</term>
<term>Microsatellite Repeats</term>
<term>Populus</term>
<term>Transcriptome</term>
<term>Trees</term>
</keywords>
<keywords scheme="MESH" qualifier="physiopathologie" xml:lang="fr">
<term>Déshydratation</term>
</keywords>
<keywords scheme="MESH" qualifier="physiopathology" xml:lang="en">
<term>Dehydration</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Computer Simulation</term>
<term>Droughts</term>
<term>Real-Time Polymerase Chain Reaction</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Réaction de polymérisation en chaine en temps réel</term>
<term>Simulation numérique</term>
<term>Sécheresses</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Populus euphratica Olivier is widely established in arid and semiarid regions but lags in the availability of transcriptomic resources in response to water deficiency. To investigate the mechanisms that allow P. euphratica to maintain growth in arid regions, the responses of the plant to soil water deficit were analyzed at a systems level using physiological and pyrosequencing approaches. We generated 218,601 and 287,120 reads from non-stressed control and drought-stressed P. euphratica leaves respectively, totaling over 200 million base pairs. After assembly, 24,013 transcripts were yielded with an average length of 1,128 bp. We determined 2,279 simple sequence repeats, which may have possible information for understanding drought adaption of woody plants. Stomatal closure was inhibited under moderate drought to maintain a relatively high rate of CO2 assimilation and water transportation, which was supposed to be important for P. euphratica to maintain normal growth and develop vigorous root systems in an adverse environment. This was accompanied by strong transcriptional remodeling of stress-perception, signaling and transcription regulation, photoprotective system, oxidative stress detoxification, and other stress responsive genes. In addition, genes involved in stomatal closure inhibition, ascorbate-glutathione pathway and ubiquitin-proteasome system that may specially modulate the drought stress responses of P. euphratica are highlighted. Our analysis provides a comprehensive picture of how P. euphratica responds to drought stress at physiological and transcriptome levels which may help to understand molecular mechanisms associated with drought response and could be useful for genetic engineering of woody plants. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23857471</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>01</Month>
<Day>23</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1573-5028</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>83</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2013</Year>
<Month>Dec</Month>
</PubDate>
</JournalIssue>
<Title>Plant molecular biology</Title>
<ISOAbbreviation>Plant Mol Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Populus euphratica: the transcriptomic response to drought stress.</ArticleTitle>
<Pagination>
<MedlinePgn>539-57</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s11103-013-0107-3</ELocationID>
<Abstract>
<AbstractText>Populus euphratica Olivier is widely established in arid and semiarid regions but lags in the availability of transcriptomic resources in response to water deficiency. To investigate the mechanisms that allow P. euphratica to maintain growth in arid regions, the responses of the plant to soil water deficit were analyzed at a systems level using physiological and pyrosequencing approaches. We generated 218,601 and 287,120 reads from non-stressed control and drought-stressed P. euphratica leaves respectively, totaling over 200 million base pairs. After assembly, 24,013 transcripts were yielded with an average length of 1,128 bp. We determined 2,279 simple sequence repeats, which may have possible information for understanding drought adaption of woody plants. Stomatal closure was inhibited under moderate drought to maintain a relatively high rate of CO2 assimilation and water transportation, which was supposed to be important for P. euphratica to maintain normal growth and develop vigorous root systems in an adverse environment. This was accompanied by strong transcriptional remodeling of stress-perception, signaling and transcription regulation, photoprotective system, oxidative stress detoxification, and other stress responsive genes. In addition, genes involved in stomatal closure inhibition, ascorbate-glutathione pathway and ubiquitin-proteasome system that may specially modulate the drought stress responses of P. euphratica are highlighted. Our analysis provides a comprehensive picture of how P. euphratica responds to drought stress at physiological and transcriptome levels which may help to understand molecular mechanisms associated with drought response and could be useful for genetic engineering of woody plants. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Tang</LastName>
<ForeName>Sha</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>College of Biological Sciences and Biotechnology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, No. 35 Qinghua East Road, Haidian District, Beijing, 100083, People's Republic of China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Liang</LastName>
<ForeName>Haiying</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Yan</LastName>
<ForeName>Donghui</ForeName>
<Initials>D</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Zhao</LastName>
<ForeName>Ying</ForeName>
<Initials>Y</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Han</LastName>
<ForeName>Xiao</ForeName>
<Initials>X</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Carlson</LastName>
<ForeName>John E</ForeName>
<Initials>JE</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Xia</LastName>
<ForeName>Xinli</ForeName>
<Initials>X</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Yin</LastName>
<ForeName>Weilun</ForeName>
<Initials>W</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>07</Month>
<Day>16</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Plant Mol Biol</MedlineTA>
<NlmUniqueID>9106343</NlmUniqueID>
<ISSNLinking>0167-4412</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D003198" MajorTopicYN="N">Computer Simulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003681" MajorTopicYN="N">Dehydration</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000503" MajorTopicYN="Y">physiopathology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055864" MajorTopicYN="N">Droughts</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="N">Gene Expression Profiling</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017343" MajorTopicYN="N">Genes, Plant</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018895" MajorTopicYN="N">Microsatellite Repeats</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011110" MajorTopicYN="N">Polymorphism, Genetic</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060888" MajorTopicYN="N">Real-Time Polymerase Chain Reaction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D059467" MajorTopicYN="N">Transcriptome</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014197" MajorTopicYN="N">Trees</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2013</Year>
<Month>03</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2013</Year>
<Month>07</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>7</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>7</Month>
<Day>17</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>1</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23857471</ArticleId>
<ArticleId IdType="doi">10.1007/s11103-013-0107-3</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>BMC Genomics. 2012 Jun 21;13:266</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22721448</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2006 Oct;29(10):1913-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16930317</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2004 Mar;37(6):914-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14996223</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinform Biol Insights. 2011 Feb 07;5:41-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21423406</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2011 Oct;9(8):922-31</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21615673</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2010 Jul;63(2):212-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20444235</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2002 Apr;12(4):656-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11932250</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2011 May;23(5):1971-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21610183</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2011 Apr;75(6):537-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21331631</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 May;141(1):97-107</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16543410</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Nov;154(3):1254-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20807999</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Proteome Res. 2007 Apr;6(4):1451-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17343403</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods. 2001 Dec;25(4):402-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11846609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2004 Feb;55(396):397-409</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14739263</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2010 Aug;22(8):2660-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20798329</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2007 Feb;143(2):876-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17158588</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2011 Nov;62(15):5311-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21831843</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2011;6(8):e23466</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21858131</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2010 Jan;38(Database issue):D822-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19858103</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2011 Jan;39(Database issue):D1114-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21097470</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Physiol Plant. 2008 Nov;134(3):403-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18785903</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1996 Aug;10(2):375-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8771791</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Plant Biol. 2011 Jun;14(3):290-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21377404</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2002;53:247-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12221975</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Sci. 2000 Feb;9(2):344-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10716186</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Res. 2010 Sep;20(9):1238-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20627892</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2006 Aug;47(3):343-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16792696</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Signal Behav. 2008 Mar;3(3):156-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19513210</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2009 Feb;103(4):551-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18662937</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2011 Apr;31(4):452-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21427158</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Pharmacol. 2000 Jan 1;59(1):55-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10605935</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2002 Feb;29(4):417-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11846875</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2013 Mar;237(3):755-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23117391</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2005 Jul 22;309(5734):570-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16040698</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2005 Sep 15;21(18):3674-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16081474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2002 Jun;89 Spec No:841-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12102510</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1994 Mar;5(3):397-405</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8180623</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2004 Jul;135(3):1697-709</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15247402</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>DNA Res. 2011 Feb;18(1):65-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21149391</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 2012 Feb;78(3):223-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22143977</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Sci. 2012 Oct;195:24-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22920996</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2010 Nov;232(6):1499-509</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20862491</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2005 Aug;56(418):2003-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15967780</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2006 Dec;25(12):1380-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16841217</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2008 Mar 04;9:118</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18318901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2010 Jul;15(7):409-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20494608</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Sep 15;313(5793):1596-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2011 Jul;62(11):3765-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21511902</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2012 Sep;160(1):38-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22715109</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2010 Jan 1;26(1):136-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19855105</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Mol Biol. 2000;132:365-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10547847</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>DNA Res. 2011 Jun;18(3):153-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21565938</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2007;35(21):7188-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17947321</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Oct;52(2):223-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17922773</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2012 Jun;24(6):2262-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22693282</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2004 Oct;9(10):490-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15465684</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2007 Mar;49(5):810-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17257168</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS Biol. 2006 Oct;4(10):e327</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17032064</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2010 Jul;15(7):395-401</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20493758</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2008 Nov 24;9:553</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19025623</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2008;59(11):2991-3007</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18552355</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2012 Jan;158(1):363-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22095047</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Dec;154(4):1697-709</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20959419</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1999 Oct;11(10):1897-910</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10521520</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2005 Jul;56(417):1975-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15928013</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Syst Biol. 2012;8:606</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22929616</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2004 Jun;38(6):940-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15165186</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2012 Jul;24(7):2934-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22822205</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2000 Apr;51(345):739-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10938866</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2005 Dec;139(4):1762-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16299175</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 Dec;18(12):3399-414</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17194763</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2009 May 09;9:51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19426529</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2010 Jan;12(1):87-93; sup pp 1-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20010812</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2005;6(12):R101</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16356264</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 1999 Jan 1;27(1):29-34</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9847135</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Carlson, John E" sort="Carlson, John E" uniqKey="Carlson J" first="John E" last="Carlson">John E. Carlson</name>
<name sortKey="Han, Xiao" sort="Han, Xiao" uniqKey="Han X" first="Xiao" last="Han">Xiao Han</name>
<name sortKey="Liang, Haiying" sort="Liang, Haiying" uniqKey="Liang H" first="Haiying" last="Liang">Haiying Liang</name>
<name sortKey="Xia, Xinli" sort="Xia, Xinli" uniqKey="Xia X" first="Xinli" last="Xia">Xinli Xia</name>
<name sortKey="Yan, Donghui" sort="Yan, Donghui" uniqKey="Yan D" first="Donghui" last="Yan">Donghui Yan</name>
<name sortKey="Yin, Weilun" sort="Yin, Weilun" uniqKey="Yin W" first="Weilun" last="Yin">Weilun Yin</name>
<name sortKey="Zhao, Ying" sort="Zhao, Ying" uniqKey="Zhao Y" first="Ying" last="Zhao">Ying Zhao</name>
</noCountry>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Tang, Sha" sort="Tang, Sha" uniqKey="Tang S" first="Sha" last="Tang">Sha Tang</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002533 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002533 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:23857471
   |texte=   Populus euphratica: the transcriptomic response to drought stress.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:23857471" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020